BP301 PHARMACEUTICAL ORGANIC CHEMISTRY –II (Theory)

45 Hours

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to

1. Write the structure, name and the type of isomerism of the organic compound.
2. Write the reaction, name the reaction and orientation of reactions.
3. Account for reactivity/stability of compounds.
4. Prepare organic compounds.

Course Content:

1. General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained.
2. To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences.

UNIT I

10 Hours

Benzene and its derivatives
A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel’s rule
B. Reactions of benzene - nitration, sulphonation, halogenation- reactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation.
C. Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction
D. Structure and uses of DDT, Saccharin, BHC and Chloramine.

UNIT II

10 Hours

Phenols* - Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols
Aromatic Amines* - Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts.
Aromatic Acids* –Acidity, effect of substituents on acidity and important reactions of benzoic acid.

UNIT III

10 Hours

Fats and Oils
Fatty acids – reactions.
Hydrolysis, Hydrogenation, Saponification and Rancidity of oils, Drying oils.
Analytical constants – Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value – significance and principle involved in their determination.

UNIT IV

08 Hours

Polynuclear hydrocarbons:
a. Synthesis, reactions
b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

UNIT V

Cyclo alkanes* Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only.
BP301 PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical)

I Experiments involving laboratory techniques:

- Recrystallization
- Steam Distillation

II Determination of following oil values (including standardization of reagents)

- Acid Value
- Saponification Value
- Iodine Value.

III Preparation of Compounds

1. Benzanilide/Phenyl benzoate/Acetanilide from Aniline/Phenol/Aniline by acylation reaction.
2. 2,4,6-Tribromo aniline/Para bromo acetanilide from Aniline.
3. Acetanilide by halogenation (Bromination) reaction.
4. 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid / Nitro benzene by nitration reaction.
5. Benzoic acid from Benzyl chloride by oxidation reaction.
6. Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
7. 1-Phenyl azo-2-naphthol from Aniline by diazotization and coupling reactions.
8. Benzil from Benzoin by oxidation reaction.
9. Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction.
10. Cinnamnic acid from Benzaldehyde by Perkin reaction.
11. P-Iodo benzoic acid from P-amino benzoic acid.

Recommended Books (Latest Editions):

5. Practical Organic Chemistry by Mann and Saunders.
8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
BP302 PHYSICAL PHARMACEUTICS-I (Theory) 45 Hours

Scope: The course deals with the various physical, physicochemical properties and principles involved in dosage forms, formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development and stability studies of pharmaceuticals.

Objectives: Upon the completion of the course student shall be able to
1. Understand various physicochemical properties of drug molecules in the designing of dosage form
2. Know the principles of chemical kinetics & to use them in assigning expiry date for formulation
3. Demonstrate use of physicochemical properties in evaluation of dosage forms.
4. Appreciate physicochemical properties of drug molecules in formulation research and development

Course Content:

UNIT-I 10 Hours

Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult’s law, real solutions. Partiallymiscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications

UNIT-II 10 Hours

States of Matter and properties of matter: State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols
– inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid-crystalline, amorphous & polymorphism.
Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications

UNIT-III 08 Hours

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions, surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.

UNIT-IV 08 Hours

UNIT-V 07 Hours

pH, buffers and Isotonic solutions: Sorensen’s pH scale, pH determination(electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.
BP 302 P. PHYSICAL PHARMACEUTICS – I (Practical) (4hrs. /week)

1. Determination the solubility of drug at room temperature.
2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
3. Determination of Partition co-efficient of benzoic acid in benzene and water
4. Determination of Partition co-efficient of Iodine in CCl4 and water
5. Determination of % composition of NaCl in a solution using phenol-water system by CST method
6. Determination of surface tension of given liquids by drop count and drop weight method
7. Determination of HLB number of a surfactant by saponification method
8. Determination of Freundlich and Langmuir constants using activated char coal
9. Determination of critical micellar concentration of surfactants
10. Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method
11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method

Recommended Books: (Latest Editions)

1. Physical pharmacy by Alfred Martin
2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical pharmaceutics by Ramasamy C and ManavalanR.
8. Laboratory manual of physical pharmaceutics, C.V.S. Subramanyam, J. Thimma settee
9. Physical Pharmaceutics by C.V.S. Subramanyam
10. Test book of Physical Pharmacy, by Gaurav Jain & Roop K. Khar
Scope: In the broadest sense, scope of microbiology is the study of all organisms that are invisible to the naked eye—i.e., the study of microorganisms. Microorganisms are necessary for the production of bread, cheese, beer, antibiotics, vaccines, vitamins, enzymes etc. Microbiology has an impact on medicine, agriculture, food science, ecology, genetics, biochemistry, immunology etc.

Objectives: Upon completion of the subject student shall be able to:
1. Understand methods of identification, cultivation and preservation of various microorganisms
2. Importance of sterilization in microbiology and pharmaceutical industry
3. Learn sterility testing of pharmaceutical products.
4. Microbiological standardization of Pharmaceuticals.
5. Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

Unit I

Introduction, history of microbiology, its branches, scope and its importance.
Introduction to Prokaryotes and Eukaryotes
Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).
Study of different types of phase contrast microscopy, dark field microscopy and electron microscopy.

Unit II

Identification of bacteria using staining techniques (simple, Gram’s & Acid fast staining) and biochemical tests (IMViC).
Study of principle, procedure, merits, demerits and applications of Physical, chemical, gaseous radiation and mechanical method of sterilization.

Unit III

Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.
Classification and mode of action of disinfectants
Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions
Evaluation of bactericidal & Bacteriostatic.
Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Unit IV

Designing of aseptic area, laminar flow equipment; study of different sources of contamination in an aseptic area and methods of prevention clean area classification.
Assessment of a new antibiotic.
Unit V

Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.

Preservation of pharmaceutical products using antimicrobial agents, Evaluation of microbial stability of formulations.

Growth of animal cells in culture, general procedure for cell culture, Primary established and transformed cell cultures.

Application of cell cultures in pharmaceutical industry and research.
BP 303 P. PHARMACEUTICAL MICROBIOLOGY (Practical)

1. Introduction and study of different equipment and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
2. Sterilization of glassware, preparation and sterilization of media.
4. Staining methods - Simple, Grams staining and acid fast staining (Demonstration with practical).
5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
6. Microbiological assay of antibiotics by cup plate method and other methods
7. Motility determination by Hanging drop method.
8. Sterility testing of pharmaceuticals.
9. Bacteriological analysis of water
10. Biochemical test

Recommended Books (Latest edition)
5. Rose: Industrial Microbiology.
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
10. Ananthnarayan : Text Book of Microbiology, Orient-Longman, Chennai
BP 304 PHARMACEUTICAL ENGINEERING (Theory)
45 Hours

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:
1. To know various unit operations used in Pharmaceutical industries.
2. To understand the material handling techniques.
3. To perform various processes involved in pharmaceutical manufacturing process.
4. To carry out various test to prevent environmental pollution.
5. To appreciate and comprehend significance of plant layout design for optimum use of resources.
6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

UNIT-I

10 Hours

Flow of Fluids: Types of manometers, Reynolds number and its significance, Bernoulli’s theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.

Size Separation: Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & Elutriation tank.

UNIT-II

10 Hours

Evaporation: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator & Economy of multiple effect evaporator.

Distillation: Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation.

UNIT-III

08 Hours

Drying: Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve, principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer, spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.

UNIT-IV 08 Hours

Centrifugation: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

UNIT- V 07 Hours

Materials of pharmaceutical plant construction, Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals. Basic of material handling systems.

Recommended Books: (Latest Editions)

BP 304 PHARMACEUTICAL ENGINEERING (Practical)

(4 hours/week)

1. Determination of radiation constant of brass, iron, unpainted and painted glass.
2. Steam distillation – To calculate the efficiency of steam distillation.
3. To determine the overall heat transfer coefficient by heat exchanger.
5. Determination of moisture content and loss on drying.
7. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
8. Size analysis by sieving – To evaluate size distribution of tablet granulations – Construction of various size frequency curves including arithmetic and logarithmic probability plots.
9. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger’s, Bond’s coefficients, power requirement and critical speed of Ball Mill.
10. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.
11. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity.
12. To study the effect of time on the Rate of Crystallization.
13. To calculate the uniformity Index for given sample by using Double Cone Blender.